Computational Modeling of Impact Response with the RG Damage Model and the Meshless Local Petrov-Galerkin (MLPG) Approaches
نویسندگان
چکیده
The Rajendran-Grove (RG) ceramic damage model is a three-dimensional internal variable based constitutive model for ceramic materials, with the considerations of micro-crack extension and void collapse. In the present paper, the RG ceramic model is implemented into the newly developed computational framework based on the Meshless Local Petrov-Galerkin (MLPG) method, for solving high-speed impact and penetration problems. The ability of the RG model to describe the internal damage evolution and the effective material response is investigated. Several numerical examples are presented, including the rod-on-rod impact, plate-on-plate impact, and ballistic penetration. The computational results are compared with available experiments, as well as those obtained by the popular finite element code (Dyna3D). keyword: Rajendran-Grove ceramic model, Material modeling, Ceramic damage, Meshless method, MLPG, High-speed impact, Penetration and perforation
منابع مشابه
Three dimensional static and dynamic analysis of thick plates by the meshless local Petrov-Galerkin (MLPG) method under different loading conditions
In this paper, three dimensional (3D) static and dynamic analysis of thick plates based on the Meshless Local Petrov-Galerkin (MLPG) is presented. Using the kinematics of a three-dimensional continuum, the local weak form of the equilibrium equations is derived. A weak formulation for the set of governing equations is transformed into local integral equations on local sub-domains by using a uni...
متن کاملAxial buckling analysis of an isotropic cylindrical shell using the meshless local Petrov-Galerkin method
In this paper the meshless local Petrov-Galerkin (MLPG) method is implemented to study the buckling of isotropic cylindrical shells under axial load. Displacement field equations, based on Donnell and first order shear deformation theory, are taken into consideration. The set of governing equations of motion are numerically solved by the MLPG method in which according to a semi-inverse method, ...
متن کاملOptimization of Meshless Local Petrov-Galerkin Parameters using Genetic Algorithm for 3D Elasto-static Problems (TECHNICAL NOTE)
A truly Meshless Local Petrov-Galerkin (MLPG) method is developed for solving 3D elasto-static problems. Using the general MLPG concept, this method is derived through the local weak forms of the equilibrium equations, by using a test function, namely, the Heaviside step function. The Moving Least Squares (MLS) are chosen to construct the shape functions. The penalty approach is used to impose ...
متن کاملMeshless Local Petrov-Galerkin Method for Elasto-Static Analysis of Thick-Walled Isotropic Laminated Cylinders
In this paper, one of the simplest and most regular members of the family of the Meshless Local Petrov-Galerkin (MLPG) methods; namely MLPG5, is applied to analyze the thick-walled isotropic laminated cylinders under elasto-static pressure. A novel simple technique is proposed to eliminate a very important difficulty of the meshless methods to deal with material discontinuities regarding to the...
متن کاملThe Applications of Meshless Local Petrov-Galerkin (MLPG) Approaches in High-Speed Impact, Penetration and Perforation Problems
This paper presents the implementation of a three-dimensional dynamic code, for contact, impact, and penetration mechanics, based on the Meshless Local Petrov-Galerkin (MLPG) approach. In the current implementation, both velocities and velocity-gradients are interpolated independently, and their compatibility is enforced only at nodal points. As a result, the time consuming differentiations of ...
متن کامل